您当前所在位置:首页手机游戏安卓游戏什么是摩根定律 摩根定律是什么

什么是摩根定律 摩根定律是什么

更新:2024-07-31 21:33:57编辑:BOSS软件库归类:安卓游戏人气:53

文章目录:

  1. 什么是摩根定律 摩根定律是什么
  2. 请教什么是摩根率?

一、什么是摩根定律 摩根定律是什么

  又叫反演律,设全集为U,其子集为A、B,则 Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB,称为摩根定律。用文字语言可以简单的叙述为:两个集合的的补集等于它们各自补集的并集;两个集合的并集的补集等于它们各自补集的交集。

  摩根定律集集合的三大运算于一身,并可以使它们互相转化。可以把“补补交”三次运算,化简为“并补”两种运算等。在逻辑中,复合命题“p且q”,“p或q”的否定完全遵循摩根定律。

二、请教什么是摩根率?

合运算中:

先并再补等于先补再交,先交再补等于先补再并.

简称:

并补补交,交补补并

摩根定律:

所谓加法关系a+b中的素数分布问题,是指,任意充分大的正整数M表为两个正整数之和时,其表为两个奇素数之和的个数问题。由于当x→∞时,加法关系只能赋予∞+∞=2∞之极限。所以,研究加法关系a+b中的素数分布问题,只能在区间(0,2∞)之间进行。则有:

2∞=1+(2∞-1)=2+(2∞-2)=...=∞+∞显然,在加法关系a+b中,当a→∞时,则b只能以超越自然数的∞+1、∞+2、...、 ∞+n、...等共尾序数的形式表之。所以,在加法关系a+b中,其基数已超出了自然数集N的基数。归纳给定了的M之加法关系a+b中的元素为集合G,与自然数集N一样,集合G中的元素,具有①传递性。②三岐性。③对于每一元素a+b,只要它位于区间(1,∞)之内,它就一定是一后继数。④良基性。所以,加法关系a+b是符合外延公理及正则公理,因为在无穷集合G的元素中的b之值,本来就是自然数的延伸而已。

对无穷集合G进行良序化,应用埃拉托色尼筛法显然是不行的。因为埃拉托色尼筛法只是针对自然数列而为,其p=x-H只适用于所考察的元素只具一个自然数之性质。在自然数列中,筛掉任何一个自然数,并不会影响其它自然数的存在。但是,在加法关系a+b中则不然,因为集合G中的元素是由两个自然数之和所组成,筛掉任何一个自然数,势必会影响另一个自然数的存在与否。由量变到质变,在自然数列中所得到的规律并不适宜应用于加法关系a+b中。

考察加法关系a+b中两个正整数之和的有关素数或合数的性质,有:素数加素数、素数加合数、合数加合数这三大类情况(此处将与1相加之情况排除在外)。所以,在集合G中,根据完备性原则,有:

素数加素数=G-素数加合数-合数加合数用符号表之,有

p(1,1)=G-{(p,H)+H(1,1)}此式即是集合论中著名的摩根定律:A~∩B~=(A∪B)~应用于加法关系a+b中的素数分布问题的求解方法。

因为在加法关系a+b中,设M为所取之值,则集合G中有元素M=1+(M-1)=2+(M-2)=...=M/2+M/2共有M/2个。将摩根定律应用于加法关系a+b中:设在区间(1,M/2]中,凡具有合数性质的元素a+b被归纳为集合A;再设在区间[M/2,M)中,凡具有合数性质的a+b被归纳为集合B;则有A∪B=(p,H)+H(1,1)以及

(A∪B)~=G-(p,H)-H(1,1)而集合A的补集A~为区间(1,M/2]中,凡具有素数性质的元素之集合;集合B的补集B~为区间[M/2,M)中,凡具有素数性质的元素之集合。所以,有A~∩B~=p(1,1)

综合以上所述,有

A~∩B~=p(1,1)=G-(p,H)-H(1,1)=(A∪B)~摩根定律所讲述的就是区域内具有两个以上集合时的完备性问题,对于加法关系a+b 而言,由于元素只是两个自然数之和,所以并不需要拓展摩根定律,用最简单的形式:A~∩B~=(A∪B)~,就可以了。

既然是加法关系,也就必须应用加法环中的公式。当设定M为所取之值时,根据唯一分解定理:

M=(p_i)^α*(p_j)^β*...*(p_k)^γ有

M=np=(n-m)p+mp 从此公式中可知,凡是具有M的素约数的合数,总是与另一具有M的素约数的合数相加于同一元素之中。由唯一分解定理所确定的a+b,我们将其谓之为特征值。由于p的倍数总是在同一元素中相加,所以,每隔p之值,就会出现一个p的倍数相加之元素。故在M=a+b中,特征值p的倍数有出现概率1/p,则与之互素的元素有出现概率为(1-1/p)。

另外,根据剩余类环

M=nq+r=(n-m)q+mq+r之公式中可知,凡不是M的素约数的素数q的倍数,总是不能与具有素约数q的合数相加在同一元素之中,r是它们相差之位。为区别于特征值,我们根据其由剩余类环而求得的,将其谓之为剩余值。由于r<q,所以,每隔q之值,会出现两个具有素约数q的元素,一个在a中,一个在b中。故在M=a+b中,剩余值q的倍数有出现概率2/q,则与之互素的元素有出现概率为(1-2/q)。

对于与特征值p互素的系数(1-1/p),由欧拉函数ψ(N)中可知,特征值p中的系数是可积函数:M/2{∏p|M}(1-1/p)。那么,对于剩余值 q的系数是否也是可积函数?由于与剩余值互素的系数(1-2/q),以前并无人涉及,是鄙人之首创,故必须对其是否为可积函数的性质作些论证。

设N=nq+r=(n-m)q+mq+r,化mq+r成为p的倍数,即mq+r=kp,可知,“q不能整除kp,那么,(q-1)个数:p、 2p、...、(q-1)p分别同余1到q-1,并且对模q互不同余:{k_1}p≠{k_2}p(mod q)”(费马小定理)。由于k<q,因此,在M=a+b中与q的倍数相加于同一元素中的p之倍数,起始于M=(n-m)q+kp,不断地加减pq,则有 M=(n-m-ip)q+(k+iq)p;1≤i≤M/pq乃是每隔pq之数值而出现一次。

因此,在M=a+b中,q的倍数与p互素不仅须对(n-m)q自身中具p之素因数的元素进行筛除,而且还须对与之构成元素对mq+r=kp的合数中具p之素因数的合数进行筛除。因此在M=a+b中,由q之倍数而构成的元素a+b中,与p互素的个数是M/q(1-2/p)。

在M=a+b中,如果p⊥M,q⊥M (其中,符号⊥表示不整除),则与p,q互素的元素a+b分别有:M/2(1-2/p),M/2(1-2/q),而与p,q互素的元素a+b在总体上有:

M/2(1-2/p)-M/q(1-2/p)=(M/2-M/q)(1-2/p)=M/2(1-2/p)(1-2/q)可知,在M=a+b中,对于剩余值的系数也是可积函数。换言之,在M=a+b中,与不大于√M的素数互素的系数,用逐步淘汰原则进行计算,不管是特征值抑或是剩余值,均是可积函数。

通过分析,获知在M=a+b中,无论是特征值或非特征值,都是可积函数。因此在M=a+b中,与小于√M的素数互素的个数有:

P(1,1)=M/2{∏p|M}(1-1/p){∏p⊥M}(1-2/p)此公式就是加法关系a+b中的一般之解。从公式的系数中可以清晰地看到摩根定律所起的作用:用不大于√M的素数作筛子,对于是M的素约数的素数之倍数,筛除的系数是(1-1/p);对于非M的素约数的素数之倍数,筛除的系数是 (1-2/p)。

当M为奇数时,由于素数2不是特征值,从剩余值的系数中可知,因存在着零因子:(1-2/2)=0,所以当M为奇数时表为两个奇素数之和的个数为零。

由此可知,在加法关系a+b中,欲求p(1,1)的个数,M之值必须是偶数,即素数2必须是特征值,才能获得p(1,1)之个数。从(1-1/p)> (1-2/p)中可知,若存在其它不大于√M的素数为特征值时,则系数不可能是最小的。因此,只有当M=2^n时,才会有最小值的系数,而且 p(1,1)=M/4∏(1-2/p)=M/4∏({p-2}/p),p>2(1)只有当乘积是无穷时,系数才会达到最小之值。

根据自然数列中素数之值依位序列而言,由于合数的存在,相邻的两个素数之值的差有大于2的,至少是不小于2,因此有(p_n)-2≥(p_{n-1}), (2)将不等式(2)的结论代入到(1)式中,用后一因式的分子与前一因式的分母相约,并保留所谓的最后因式的分母,我们可以获得 p(1,1)≥M/4(1/p)≥M/4(1/√M)=√M/4,当M→∞时,有√M/4→∞。换言之,在大偶数表为两个奇素数之和中,其个数不会少于 √M/4个。所以,设M为偶数时,就是欲称哥德巴赫猜想,当a→∞时,哥德巴赫猜想是为真。

由于所求的一般之解是设M为无穷大时求得的,因此,当M为有限值时,会产生一定值的误差。纵然如此,系数也是能很好地反映出大偶数表为两个奇素数之和的规律。因为从系数上分析:对于具相同特征值的M,M越大,p(1,1)的个数越多:p(1,1)≥Lim(√N/4)→∞。

对于不同特征值的N,特征值越小,p(1,1)的个数越多:若p<q ,则(1-1/p)(1-2/q)>(1-1/q)(1-2/p)。

特征值越多,p(1,1)的个数也越多:

(1-1/p)>(1-2/p)。

当然,这三个因素必须有机地结合起来,才能如实地反映p(1,1)的个数。

关于H(1,1)中具有相同的出现概率却互不相交的剩余类值的诸子集,有:

φ,H(f,e),H(g,e),...,H(α,e),H(β,e),H(γ,e),...

H(e,f),φ,H(g,f),...,H(α,f),H(β,f),H(γ,f),...

H(e,g),H(f,g),φ,...,H(α,g),H(β,g),H(γ,G),...

......

H(e,α),H(f,α),H(g,α),...,φ,H(β,α),H(γ,α),...

H(e,β),H(f,β),H(g,β),...,H(α,β),φ,H(γ,β),...

H(e,γ),H(f,γ),H(g,γ),...,H(α,γ),H(β,γ),φ,...

其中e<f<g<...<α<β<γ∈W≤√N。我们对以上诸子集进行商集化分割,不失一般性,设有子集H(β,α),由于 H(α,x)∩H(x,α)=φ,显然有 H(α,e)∩H(β,α)=φ,H(α,f)∩H(β,α)=φ,H(α,g)∩H(β,α)=φ,...,H(α,β)∩H(β,α)=φH(e,β)∩H(β,α)=φ,H(f,β)∩H(β,α)=φ,H(g,β)∩H(β,α)=φ,...,H(α,β)∩H(β,α)=φ 除处以外,其它的诸子集与H(β,α)显然有交集:

H(f,e)∩H(β,α)=H(fβ,eα),H(g,e)∩H(β,α)=H(gβ,eα),...,H(β,e)∩H(β,α)=H(β,eα)...等。但是对于诸非同模类的子集之交,我们有:

H(fβ,eα)∈H(β,eα),H(gβ,eα)∈H(β,eα),...�由子集的包含性,可知此类子集之交已被同模类的子集之交所包涵,因此可以直接删掉。(因找不到包含符号,故用属于∈代之)。

于是,在分割子集H(β,α)的元素时,可以按子集H(β,α)所在行列的方向上与诸同模的子集进行商集化的分割。

从行的方向而言,有诸子集H(e,α),H(f,α),H(g,α),...等与其有交集:

H(e,α)∩H(β,α)=H(eβ,α),H(f,α)∩H(β,α)=H(fβ,α),H(g,α)∩H(β,α)=H(gβ,α),...。

从列的方向而言,有诸子集H(β,e),H(β,f),H(β,g),...等与其有交集:

H(β,e)∩H(β,α)=H(β,eα),H(β,f)∩H(β,α)=H(β,fα),H(β,g)∩H(β,α)=H(β,gα),...。

但由于在行与列两方向上存在有不相交的子集:

H(e,α)∩H(β,e)=φ,H(f,α)∩H(β,f)=φ,H(g,α)∩H(β,g)=φ,...。因而在与H(β,α)的交集中产生了不相交的平行子集:

H(eβ,α)∩H(β,eα)=φ,H(fβ,α)∩H(β,fα)=φ,H(gβ,α)∩H(β,gα)=φ,...。所谓不相交的平行子集乃指诸互不相交的子集在出现概率的数值上是相同的。

但是对于诸非平行的子集,显然有:

H(eβ,α)∩H(fβ,α)=H(efβ,α),H(β,eα)∩H(fβ,α)=H(fβ,eα),H(eβ,α)∩H(β,fα)=H(eβ,fα),H(β,eα)∩H(β,fα)=H(β,efα)...等交集。从而又产生了诸互不相交的平行子集:

H(efβ,α)∩H(fβ,eα)=φ,H(efβ,α)∩H(eβ,fα)=φ,...。

根据行与列两方向上所存在的不相交子集的几何性质,可知对于诸不相交的平行子集的数目,按几何等级2^n构成。

综上所述,在对子集H(β,α)作商集化分割时,由于存在有互不相交的平行子集,显然现行的逐步淘汰原则已不再适用于计算这样的商集化子集(否则将十分繁琐),必须寻找新的方法。

由于诸互不相交的平行子集在出现概率的数值上是相同的,因此我们可以将诸互不相交的平行子集以同一符号表之,而在其旁配以系数表示诸互不相交的平行子集的数目。因诸互不相交的平行子集属于且仅属于某一商集化子集,所以系数对于该子集中的元素并不产生影响,而逐步淘汰原则恰能作用于该元素上。如此而为,可保持逐步淘汰原则的一般形式。于是,对于位于对角线右上方的诸商集化子集可以有类似于逐步淘汰原则的计算方法:

H(f,e),H(g,e)-H(fg,e),H(h,e)-H(fh,e)-H(gh,e)+H(fgh,e),...。

----H(g,f)-2H(eg,f),H(h,f)-2H(eh,f)-H(gh,f)+2H(egh,f),...。

------------H(h,g)-2H(eh,g)-2H(fh,g)+4H(efh,g),...。

-------------......

以上诸字母e,f,g,...等皆代表为不大于√N且非M的素约数的素数。

设p_1<p_2<...<p_t∈W≤√N,且位于对角线右上方的第n行第m列的子集是H(p_m,p_n),且有n<m。从行的方向而言,有m-2个子集与其有交集,从列的方向而言,有n-1个子集与其有交集。由于n<m,可知n-1≤m-2,因而所产生的诸不相交的平行子集的个数最多为2^(n- 1)个。

从类似逐步淘汰原则的表中寻找出第n行第m列方法中进行商集化分割,可以有如下的计算方法:

π{H(p_m,p_n)}/(N/2)=(1/{p_n}{p_m}){1-({n-1∑i=1}(2/p_i)+{m-1∑i=n+1}(1 /p_i))+({∑1≤i<j<n}(4/{p_i}{p_j})+{∑1≤i<n,n<j≤m-1}(2/{p_i}{p_j})+ {∑n<i<j≤m-1}(1/{p_i}{p_j}))-...+(-1)^{m-2}(2^{n-1}/{p_1}{p_2}...{p_(n- 1)}{p_(n+1)}...{p_(m-1)})}=(1/{p_n}{p_m})(1-2/p_1)(1-2/p_2)...(1-2/p_{n-1})(1-1/p_{n+1})...(1-1/p_{m-1})=(1/{p_n}{p_m}){n-1∏i=1}(1-2/p_i){m-1∏i=n+1}(1-1/p_i).

到此,以上就是小编对于摩根律的问题就介绍到这了,希望介绍关于摩根律的2点解答对大家有用。

Amysql_youhua_articlehuaunyuan($article);
摩根律
上万人围观拆卡直播:昨天被骗子拉进群,薅了一百六羊毛退出了,你们有这样的经历吗 小区保安围殴外卖员:经常见到外卖员与小区保安发生冲突,那保安为什么要为难外卖员
欧意国内注册 欧易国际注册 欧意交易所app官方下载

游客 回复需填写必要信息